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Abstract: Recently the methods of machine learning, deep learning (neural networks) have been used
intensively in scientific research and to suit many applications. This paper attempts to analyse and forecast the
Wolf number series cycles using machine learning algorithms. The applied class of algorithms is decision-tree
ensembles like the Random Forest and the Gradient Boosting (the XGBoost realisation). The quality of designed
algorithms was evaluated based on the three suspended cycles 22-24, the forecast for cycle 25 was provided.
The comparison of algorithm forecasting results for the old and new versions of WSN revealed the improved
forecasting quality for the old version of the series compared to the new one.
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Pesrome: B nocnedHue 200bi Memodbl MauwuHHO20 obydyeHusi (ML), arnybokoe obyyeHue (HelUpOHHbIe
cemu) ece aKkmueHee 8HeOPsIOMCS U UCTO/b3YIOMCS 8 WUPOKOM Kpyee Hay4HbIX ucciedoeaHuli u npukmnadHbiX
3aday. B daHHol pabome, npuMeHsis an2opummbl MawuUHHO20 0ByyeHusi, MpednpuHama nonbimKa aHanusa u
rpoeHo3uposaHusi yuknos psida yucen Bonbgpa WSN V.2. Vcrionb3yembili knacc ansopummos — aHcambriu
Oepesbes pelweHul: criyqalHbil nec (Random Forest) u Gradient Boosting(peanusayus XGBoost). Kayuecmeo
MOCMPOEHHbIX arneopummo8 OUEHUBAeMmCsl Ha mpex OMIIOXEHHbIX Yuknax: 22-24, makxke rnocmpoeH npo2HO3
ona 25 yukna WSN v.2. llpu cpasHeHuUuU pe3ynbmamos rnpogHo3uposaHusi aneopummos Ha WSN v.1 u v.2
omMeYeHo yryqweHue Kkayecmea rpedckasaHull 0518 cmapot eepcuu psda(v.1) no cpagHeHuUro ¢ V.2.

Data preprocessing

The most crucial stage of data analysis and model development in the ML is data pre-
processing. For better discerning of regularities, the WSN v.2 [1] series without quasi-two-year
components (periods less than 2 years) averaged by 13 months was used. The obtained smoothed
WSN_smooth series is shown in Fig. 1.
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Fig. 1. WSN v.2 series without quasi-two-year components
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Due to incompletion and gaps in the data, cycles from 1 to 9 were discarded and not used in the
analysis and forecasting [2]. To increase the dataset amount, the WSN_smooth series was duplicated
twice from the cycle 10. For example, to forecast the cycle 22, the part of the series from cycle 10 to
cycle 21 was repeated twice.

In the ML, objects are characterised with the set of numeric parameters (features), to which target
variables (targets) are associated. The general problem is to learn to restore the desired regularity
using the set of known objects (the training dataset) and the corresponding target vector. As the new
set of objects (the test dataset) is obtained, the ML algorithms forecast the target vector.

In this paper, the algorithm for the creation of the training dataset is as follows: the current
value of the series (target) X; is forecasted using the previous k values: X¢—x , ..., Xt—1. To help

algorithms discern long-period components of the series, the k=831 was selected (it corresponds to
about 6 cycle lengths). The training dataset was created using the slide along the WSN_smooth
series. The training dataset and the target vector are shown schematically below.

X1 "t Xgm Xg32
Dataset: : S target:
Xt-g31 " Xt-1 Xt

Now will be considered in more detail the process of the solution to forecast the cycle 22. To create the
training dataset and target vector, the WSN_smooth series from double-length cycles 10 to 21, which
was processed to the end with the slide algorithm, was used as a base. The ML algorithms were

. . , ‘ed
adjusted based on the results obtained. To forecast the first value xfm of suspended cycle 22, the k

. . ed
of previous values was used. To forecast the n point of suspended cycle xrﬁ”e , the already forecasted
‘ed ed .
.Xfre , .--.Xf:}_el values of cycle and kK —n 4+ 1 values of previous cycles were used. To forecast
cycle 23, the twice-duplicated WSN_smooth series from cycles 10 to 22 was processed to the end
with the slide algorithm; the further solution scheme is the same. To forecast the cycle 24, the twice-
duplicated WSN_smooth series from cycles 10 to 23 was processed to the end with the slide
algorithm, and so on.

Data analysis algorithms

Parameters of machine learning models are of two types: internal and hyperparameters. The
model seeks the internal those automatically based on the dataset and target vector. Hyperparameters
should be set up by a researcher who should vary the values; models will discern regularities in the
data better or worse, and the error function will be larger or smaller respectively for the new (or
suspended) data. In this paper, adjustable hyperparameters of the Random Forest Regressor
algorithm were: n_estimators (the number of trees in the algorithm), max_features (the number of
flags to choose the splitting), min_samples_leaf (the limitation for the number of samples in the leaf).
Parameters of the XGBoost Regressor algorithm were: n_estimators (the number of trees in the
algorithm), learning_rate (the learning rate), subsample (the part of the dataset used for learning),
max_depth (the maximum depth of trees), min_samples_leaf (the limitation for the number of samples
in the leaf). To evaluate the forecasting quality of the suspended cycle model, the RMSE error function

o | 2 - . .
(the root-mean-square error, Jl/m }'Zl(xf’ ue _ xf”"d) , m is the number of points in the cycle)

was used. The optimum parameter values for the models were adjusted by varying the
hyperparameter values and obtaining the forecast error function in cycles 22 to 24. For example, the
RMSE distribution for cycle 22 of one of the Random Forest models with various combinations of
value pairs for max_features and min_samples_leaf parameters is shown in Fig. 2.
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Fig. 2. RMSE error matrix at cycle 22

Cycle’s predictions

For steadier forecasting, several models were developed, and forecasts for them were
averaged. Five models were used in forecasting; three of them (rf1, rf3, rf4) relate to Random Forest
Regressor and two (xgh5, xgh6) to XGBoost Regressor. Besides the rf4, all models were trained using
duplicated series; the rf4 was trained based on the dataset created from the WSN_smooth series with
no repetitions, which increased the variety of algorithms. As a rule, the forecasting averaging force for
several algorithms (the ensemble) increases as the variety in the ensemble rises. The forecasting
results for models and their averaged forecasts for cycles 22 to 24 respectively are shown in Fig. 3-5.
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Fig. 3. Model predictions for cycle 22 (left) and their average (right)
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Fig. 4. Model predictions for cycle 23 (left) and their average (right)
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Fig. 5. Model predictions for cycle 24 (left) and their average (right)

It is worth noting that the minimum point between the previous and new cycles was accepted as the
new cycle start in the smoothed WSN_smooth series. Even insignificant shifting of the cycle start by 4-
6 points often results in the notable changes in the model forecast.

Model forecasts for cycle 25 are shown in fig.6.

|
120 - sl average forecast 25 cycle

cle's value

V.
cy
£

20 a0 60 &0 100 120 0 20 40 0 80 100 120
cycle point index cycle point index

Fig. 6. Model predictions for cycle 25 (left) and their (no rf4) average (right)

As it is seen, the rf4 model fails on cycle 25, but if it is adjusted using the dataset obtained
from the WSN_smooth series using the duplication, then the forecast complying to those for other
models will be obtained. The averaged forecast of the new cycle without including the forecast for the
rf4 model is shown in fig.6.

Comparing WSN v.1to v.2

Besides the analysis of the WSN v.2 series with no quasi-two-year components
(WSN_smooth), the machine learning methods were used to study the classic WSN v.1 and WSN v.2
series. The training dataset creation scheme and the adjustment of parameters using suspended
cycles are the same. For WSN v.1, the Random Forest-class algorithms are steadier in
hyperparameters. It means that it is easy to adjust the parameter value ranges, in which the error is
minimised at once for all three suspended cycles. For WSN v.2, hyperparameter value ranges that
minimise the error in cycles 22 and 24 do not match. Fig.7-9 shows distributions of error (RMSE) in
cycles 22 to 24 for WSN v.1 and v.2 by values of max_features, min_samples_leaf parameters of one
of the Random Forest models.
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Fig. 7. Error matrix on cycle 22 WSN v.1 (left), WSN v.2 (right)
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Fig. 8. Error matrix on cycle 23 WSN v.1 (left), WSN v.2 (right)
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Fig. 9. Error matrix on cycle 24 WSN v.1 (left), WSN v.2 (right)

It is clearly seen that for v.1, the minimum points in suspended cycles are reached in the same
range (below the secondary diagonal of the error matrix). For v.2, these ranges almost do not
intersect, which is a characteristic pattern. Analysing the forecast results for different models, it may be
said that, on average, for v.1, algorithms restore better the regularities of the series and are steadier
than for v.2. It might be associated with the supplementary noisiness of the new version of series after
the transformation of v.1 into v.2 [3] (fig.10).
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Fig. 10. Ratio WSN v.2 to WSN v.1

Results

This paper attempted to restore the dynamics of smoothed Wolf number series (with no two-
year components) using the machine learning algorithm. The quality of forecasting models was
evaluated based on cycles 22 to 24, and algorithms demonstrated quite good results for suspended
data. Moreover, the forecast for the current cycle 25 was performed too. Also, the ability of algorithms
to restore regularities for WSN v.1 and v.2 was analysed. In average, the reviewed algorithms based
on decision trees restore better the regularities for WSN v.1 than for v.2. Perhaps it occurs due to the
supplementary noisiness of the new version of the Wolf humber series after the transformation of v.1
into v. 2.
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